If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+16y+3=0
a = 4; b = 16; c = +3;
Δ = b2-4ac
Δ = 162-4·4·3
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{13}}{2*4}=\frac{-16-4\sqrt{13}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{13}}{2*4}=\frac{-16+4\sqrt{13}}{8} $
| F(x)=x^2±1 | | 8y−4=7y | | -2=b/10 | | 3(n-4)-6=(6-n)(-3) | | 15/8=5/2s | | 25x-3=22 | | 18=45-3f | | x+43=57 | | 5x^+54x-143=0 | | 12=5+m | | Y=8/3x-15 | | 20=-7n-3n | | -6(1+5b=144 | | p-(-11)=23 | | -5=-2r+5-8r | | -11=1+4r+8r | | 7y+2y=14 | | w^2+13w+90=180 | | 3x^2+2√5x-3=0 | | 9m+21=-384 | | -2=k-15 | | 12=p-3p | | X-2(2x-3)=18 | | -(7n+6)=5-2(5n-8) | | 3b^2+8b-108=0 | | 3w-(-4)=8-1w | | -3(5+7p)=5(-2p+8) | | 331/7=x | | (2y-4)-y=14 | | -16=2(-3x+4 | | 10(-x+8)=20 | | 2(6r-5)+4r=-2(1-2r)-8 |